Synthesizing transformers

· atharvas's blog


TL;DR: RASP is a tensor processing language which provides a language to hand-write transformers. In this report, we survey the main features of RASP and how these features can be leveraged for synthesis. The synthesis task is formulated as a regression task given a synthetically generated dataset of input-output examples. Several complications arise while attempting different synthesis techniques. Overall, I tried Bottom up synthesis, top-down synthesis, and library learning. I'm still working on the library learning experiments!

Section 1: Motivation #

Transformers are feed-forward neural networks that specialize in modelling sequences. They have been extremely successful in NLP and Computer Vision because they make little to no assumptions about the input sequences and, consecutively, model large datasets of sequences very well. However, it is extremely hard to debug such networks and understand their inner workings. One recent approach offers a way to do this by postulating an automata for the transformer model[1]. This automata, encoded as a programming language called Reduced Access Sequence Programming (RASP), allows an expert to handwrite a program that perform sequence-to-sequence transformations. This figure, from the original paper, gives a brief overview:

image-20220910165249392

The authors of this project are interested in distilling a transformer architecture to an equivalent program in RASP. To do this, we will use program synthesis where the specification is in the form of a transformer architecture and a dataset of input examples to generate a dataset of input-output pairs.

Section 2: Introducing RASP #

Reduced Access Sequence Programming is a custom programming language that was presented at ICML2021 as a formal way of reasoning about the inductive biases of a transformer. The authors of RASP take a constructionist approach in designing the programming language. That is, RASP aims to directly model the salient operations of a transformer. Because the focus is on interpretability and correctness, features of transformers that only exist to improve robustness and trainability such as Dropout and Layer Normalization are left out from the base programming language. I shall first define the base builidng blocks of a transformer encoder, then describe how they are modelled in RASP, and finally show RASP working on a toy example.

Introducing Transformers #

A transformer encoder is a feedforward neural network that consumes a list of input tokens and transforms them into a list of output tokens. A functional signature of a transformer looks like this: $f(X_{T \times d_e }, \theta) \rightarrow \hat{X}_{T \times d_e}$, where $X$ is an sequence of input tokens and $\theta$ are the parameters of the neural function. This formulation lends itself very well to modeling sequence to sequence operations. Phong et. al, 2022 [8] give an excellent review of the different transformer algorithms used in sequence to sequence modelling. A transformer encoder and decoder module coupled together allow the transformer to be trained in an unsupervised fashion (Vaswani et. al, 2017). Here, I reiterate the salient features of the transformer encoder used in (Vaswani et. al, 2017):

Features of RASP #

RASP uses these salient points to build a programming language that captures the inductive biases present in neural networks.

  1. Input Representation: The RASP paper uses a character-level tokenization of the input by default. This can be changed to a sentence or a specific delimiter based tokenization by the user. Specifically, the input to RASP is a fixed length array of string's (List<String>(LEN)). It is assumed that the output will also be a fixed length array of string's. This guarantees that the number of tokens remains the same.
  2. Positional encoding: Transformers concatenate the input tokens and the positional encoding for the token before feeding the input into the transformer encoder. The logical equivalent of a concatenation operation here is passing a pair of fixed length string's through the program where the first element is the input string and the second element is a list of indices for each element in the string. RASP relaxes this paring. RASP constructs two built-in functions tokens :: string -> list<string> and indices :: list<T> -> list<int> to allow access to the tokenized representation and the indices at any point in the program.
  3. Scaled Dot Product Attention: Attention is a matrix multiplication between the selector matrix $\mathbf{S}$ and a linear interpolation of the contextual tokens. RASP realizes this as a select-aggregate operation. The select operation consumes two sequences of the same type and produces
  4. Feedforward blocks: RASP allows the user to write functional element-wise tensor manipulation programs called sequence operators (abbreviated to s-ops). tokens and indices introduced earlier are the simplest s-ops. RASP offers overloaded bindings for most python primitive functions.

Here, we list out some of the common RASP primitives:

 1---------------------
 2-- RASP Primitives --
 3---------------------
 4
 5T = string, int, float
 6
 7--- Sequence Operators ---
 8s_ops ::=
 9    {- Built in s-ops -}
10	tokens :: string -> list<string>
11    indices :: list<T> -> list<int>
12    length :: list<T> -> list<int>
13    {- Tensor processing operators. Tensor-tensor operators are applied elementwise following python semantics, tensor-constant operators convert the constant to a filled tensor and follow tensor-tensor dynamics. -}
14    round :: list<float> -> list<int>
15    + :: list<T> -> list<T> -> list<T>
16    / :: list<T> -> list<T> -> list<float>
17    < :: list<T> -> list<T> -> list<bool>
18    ...
19    {- Tensor interaction operators. This is inspired by dot-product attention.-}
20    select :: list<T> -> list<T> -> (T -> T -> bool) -> matrix<bool>
21    aggregate :: matrix<bool> -> list<T> -> list<T>
22    
23{- A lot of python constructs such as `def`, `dict`, and `list` are overloaded to make it easy to manipulate programs. This is not part of the base RASP language and only to help organize code. -}

A Running Example #

Let's take the example of reversing a sequence of tokens. Specifically, we want to make a function reverse('xyz') = 'zyx'. This can be implemented using a subset of the constructors we introduced above:

 1def reverse(input_string='xyz'):
 2    tokens = tokens(input_string)
 3	indices = indices(input_string)
 4    length = length(input_string)
 5    reversed_indices = length - indices - 1
 6    reversed_mat = select(indices, reversed_indices, ==) # Each element is `i == len - j - 1`
 7    reversed_str = aggregate(reversed_mat, tokens)
 8    return reversed_str
 9
10def flattened_reverse(input_str='xyz'):
11    return aggregate(select(indices(input_string), length(input_string) - indices(input_string) - 1, ==), tokens(input_string))

RASP Compiler: The authors provide a compiler that converts a RASP program to a partial transformer architecture. Briefly, they replace each select-aggregate block with a single-head attention block, initialized to match the select-matrix's weights. They aggregate s-ops on a per-layer basis and replaced with a trainable MLP. A "full" compilation would require calculating the weights of the MLPs. The authors did not implement this.

image-20221204101516657

The `reverse` program compiled to a partial transformer architecture. The weights on the right were obtained by training a transformer model on the same task with an attention-matrix regularization.

Making a differentiable approximation of RASP allows us to use neural guided synthesis techniques. We do this on a per-function basis.

Section 3: Transformer Synthesis #

@TODO: Three sections here. First, problem definition/ Second, experiments using NEAR. Third, experiments using Dreamcoder and finding common abstractions with Stitch.

There are four features of RASP that make it amenable to synthesis:

  1. Functional Language: Programs in RASP do not have loops or conditionals and can be expressed as compositions of functions on the input sequence. Notwithstanding let expressions (variable declarations), we don't need to keep track of a variable environment while synthesizing programs.

  2. A (weak) notion of equality: RASP programs can be compiled to an equivalent transformer architecture. This seems to be a many-to-one mapping. This makes RASP amenable to bottom-up program synthesis methods because we can compare equivalence between RASP programs by comparing the (binary) weights of the compiled architectures.

  3. Differentiability: RASP primitives are inherently differentiable. RASP is built on top of selector (select, selector_width) , aggregator (mean, sum), and comparator (and, le, leq, eq) functions. All these functions have good approximate continuous relaxations. This means that RASP semantics can be re-implemented to make a differentiable programming language. This allows us to use top-down program synthesizers that evaluate partial programs and use neural networks to guide the search (such as NEAR[2] and dPads[3]).

  4. Compositionality: Programs in RASP are inherently composable. This allows us to reuse abstractions important for a particular task in other tasks. For instance, length -- one of the primitive s-ops -- requires two select-aggregate-sequence-operation blocks in our RASP implementation. It exists as a built in abstraction because it is extremely important for implementing complex functions. Other such structures might exist that we can leverage to learn a library of abstractions.

These properties allows us to use three classes of synthesis methods 1) Bottom-up synthesis, 2) Top-down synthesis, and 3) Library learning.

Problem Definition #

Given:

we want to find a architecture $\alpha \in \mathcal{L} $ with parameters $\theta$ that obeys the following constraint: $$ \min_{\alpha, \theta} \sum_{i=1}^{T} \phi(\alpha, \theta, \mathbf{X}^{(i)}, \mathbf{Y}^{(i)}) $$

Bottom-Up Inductive Synthesis #

Within bottom up synthesis, we posit many programs starting from the terminal nodes and combining them in different ways. This problem is notoriously NP-complete (PSPACE I think? TODO) but, in practice, is pretty fast because bottom up synthesis is embarrassingly parallelizable. The challenge with bottom up synthesis is that the language should implement a notion of equality between different programs so we can prune semantically equivalent candidates. RASP showed initial promise of having a notion of equality because the program can be compiled to an equivalent transformer architecture. However, after careful reading through the paper, we realized that RASP's compiled transformer doesn't initialize the MLPs. This is problematic for defining a notion of equality because MLPs, as universal function approximators, admit a large class of semantically similar functions. This severely reduces the efficacy of equality based pruning and, consecutively, reduces the efficacy of bottom up synthesis itself.

Instead of probing this concept further, I decided to use a different class of synthesis algorithms instead.

Top-Down Inductive Synthesis #

Next, we decided to use a neural guided search algorithm for finding programs within RASP. We procedurally generated datasets used in the RASP project for training transformers for top-down inductive synthesis.

DSL Changes: I had to modify RASP to allow gradient backpropagation. This required using continuous relaxations[4] for certain functions. I describe all the changes made below:

NEAR Changes: I implemented this in NEAR and defined a "typed" neural network depending on the type signature of the "hole":

Type signature of hole Neural network relaxation implementation
hole :: T -> T feedforward MLP with ReLU activation
hole :: T -> bool feedforward MLP with a sigmoid activation and a softmax normalization.
hole :: list<T> -> list<T> An RNN implemented as a bidirectional GRU block.
hole :: list<T> -> list<T> -> matrix<bool> scaled dot-product attention

Results: NEAR wasn't able to discover any meaningful programs. Here is the performance for the reverse task.

Overall, NEAR suffered from the fact that the DSL is made to be used in an imperative programming style where variables defined earlier are reused. I considered manually adding in useful combinations of functions (such as SelectAggregateBlock :: list<T> -> list<T> -> list<T> to the DSL to speed up NEAR's synthesis. However, instead of doing this manually, I figured that library learning might be an interesting technique to automatically extract common sub-structures.

Library Learning #

I use dreamcoder for library learning. Dreamcoder consists of three phrases:

I ran out of time this semester to run the entire dreamcoder pipeline. For this report, I only talk about the experiments I did to finetune the Abstraction phase of dreamcoder for RASP.

Specifically, I hand-curated a list of RASP programs (from the paper) and rewrote these programs in a lisp-like form that Dreamcoder can consume. Here are some sample programs:

 1;; Length
 2(length $0)
 3;; indices
 4(indices $0)
 5;; Running mean
 6(aggregate (select indices indices <) tokens);
 7;; Length
 8(round div one (aggregate (select one one ==)  (indicator (eq indices zero))))
 9;; Reverse
10(aggregate (select (indices $0) (sub (sub (length $0) (tokens $0) one)) less_than) (tokens $0))

The original OCaml program compressor struggles to find even simple abstractions (select-aggregate). This is an inherent limitation of DreamCoder. Instead, we use Stitch[7] to find abstractions. Stitch leverages the dataset of tasks and finds abstractions that maximally fit across tasks. This works well in finding common abstractions across tasks. Here is an example of the abstractions found for this dataset.

 1{
 2      "body": "(aggregate (select (indices #0) #1 less_than) (tokens #0))",
 3      "dreamcoder": "#(lambda (lambda (aggregate (select (indices $1) $0 less_than) (tokens $1))))",
 4      "arity": 2,
 5      "name": "fn_0",
 6      "rewritten": [
 7        "(lam (length $0))",
 8        "(lam (indices $0))",
 9        "(lam (fn_0 $0 (indices $0)))",
10        "(lam (round div one (aggregate (select one one equals_to) (indicator (eq (indices $0) zero)))))",
11        "(lam (fn_0 $0 (sub (sub (length $0) (tokens $0) one))))"
12      ],
13
14}

We are the first "end-user" of Stitch besides the authors. However, Stitch, currently, cannot integrate into the DreamCoder loop (yet!). I am currently working with the authors of Stitch to make this integration.

Section 4: Conclusion #

Overall, I tried synthesizing programs using top-down synthesis , bottom-up synthesis, and library learning. Library learning seems the most promising because we already have a corpora of program abstractions that we can leverage to solving more problems. However, Stitch is not ready to be used with DreamCoder. In fact, I was the second Stitch user (after the authors).

I'd love to pursue this topic as a serious research problem in the future.

Relevant Material #

[1] Thinking Like Transformers https://arxiv.org/pdf/2106.06981.pdf

[2] Neural Admissible Relaxations https://arxiv.org/abs/2007.12101

[3] Differentiable Synthesis of Program Architectures https://openreview.net/forum?id=ivXd1iOKx9M

[4] Smooth Interpretation https://www.cs.utexas.edu/~swarat/pubs/pldi10.pdf

[5] TF-Coder https://arxiv.org/abs/2003.09040

[6] Programmatically Interpretable Reinforcement Learning https://proceedings.mlr.press/v80/verma18a/verma18a.pdf

[7] Top-Down Synthesis for Library Learning https://arxiv.org/abs/2211.16605

[8] Formal Algorithms for Transformers https://arxiv.org/abs/2207.09238